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1. Introduction

This is a collection of routines for 3D asteroid shape modelling from observations. This
package is not meant to used as a black box, usage requires some understanding how
and why these methods work and their limitations. The software is provided ‘as is’
without warranty of any kind. The program is still very much a work in progress and
more will features will be added in the future. The main features are:

• Gradient based optimization
• Parametric shape supports for general, non-starliked and nonconvex surfaces
• Boundary contour extraction is not required for disk-resolved images
• PSF may be easily incorporated
• Robust convergence
• Parallel computing

The novel feature is data fitting on the Fourier plane. This allows circumventing tedious
subpixel fitting on the spatial domain and offers natural interpretation for the pixel size
as maximum frequency content present in the data. Observational methods currently sup-
ported are

• Disk-integrated photometry (lightcurves)
• HST/FGS data
• Disk resolved optical images, e.g. adaptive optics
• Disk resolved interferometry
• Disk-resolved thermal observations
• Range-Doppler radar images

The theory behind these reconstruction methods is explained in Viikinkoski et al. (2015);
Viikinkoski & Kaasalainen (2014); Kaasalainen & Viikinkoski (2012).

2. Shape supports

Shapes are represented as a collection of triangular facets formed from vertices, and the
vertex coordinates depend on parameters. Currently supported parametric shape represen-
tations are octantoids (Kaasalainen & Viikinkoski 2012) and subdivision surfaces.

An octantoid is a surface given by p ∈ R3 that can be parametrized in the form

p(θ, ϕ) =


x(θ, ϕ) = ea(θ,ϕ) sin θ cosϕ,
y(θ, ϕ) = ea(θ,ϕ)+b(θ,ϕ) sin θ sinϕ,
z(θ, ϕ) = ea(θ,ϕ)+c(θ,ϕ) cos θ,

where a, b and c are conveniently expressed as linear combinations of the (real) spherical
harmonic functions Ym

l (θ, ϕ), with coefficients alm, blm and clm, respectively. Note that
(θ, ϕ), 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π, are coordinates on the unit sphere S 2 parametrizing the
surface.
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A subdivision surface is constructed by first choosing an initial control set (vertices),
which are the parameters determining shape, and the final surface is formed by applying a
subdivision method to the initial shape.

3. Regularization methods

As the shape reconstruction from observations is an inverse problem, regularization
methods are needed to keep the shape coherent and to compensate for conflicting data.
Since the shape is represented by a triangular mesh, regularization should keep the mesh
both coherent and smooth. Following regularization methods are implemented:

• Octantoid Reg is for octantoids only. This regularization penalizes divergence
from a starlike shape.

• Convex Reg tries to keep shapes locally convex.
• area reg measures facet areas and divergence from the mean facet area is penal-

ized.
• dihedral angle reg prefers planar regions by discouraging large angles be-

tween the normal vectors of adjacent facets.
Usually, octantoid and convex regularization are used for octantoids, and convex, area and
dihedral regularization for the subdivision surfaces.

4. Coordinate frames and rotations

ADAM uses three different coordinates systems: the asteroid-centric coordinate frame
(object frame) with coordinate axes fixed to the asteroid, the asteroid-centric inertial frame
(world frame), and the camera frame, which is determined by the instrument orientation
geometry. The plane-of-sky view of an asteroid is obtained by projecting the asteroid in
the camera frame to the xy-plane.

Orientation of the asteroid in the world frame is determined by three angles (and time
t): ecliptic latitude β ∈ [0, π] (NB: DAMIT uses 90◦ − β)), ecliptic longitude λ ∈ [0, 2π]
and the rotation rate ω (rad/day). Transfer matrix is

Rz(λ)Ry(β)Rz(ω · t),

where Ri the standard three dimensional rotation matrix with respect to the axis i. Matlab
routine for calculating the (transposed) transfer matrix is Rot Matrix. It also determines
partial derivatives wrt. angles. Conversion from the world frame to the camera frame is
determined by two vectors: camera direction E as seen from the world frame (camera look
direction is −E), and camera up direction v which determines how camera is rotated wrt.
world. This is useful is in the case observations are in the equatorial coordinates. Camera
frame conversion matrix RC maps the observable quantities to the first two coordinates,
third coordinate axis is chosen to complete the coordinate system. Thus the total conversion
matrix from the object to two dimensional plane is

PRCRz(λ)Ry(β)Rz(ω · t),

where P is the projection matrix discarding the third coordinate.
The camera matrix for adaptive optics and other similar observations is determined by

the function Cam Matrix. The of Range-Doppler radar is slightly more complicated, since
the camera mapping depends on rotation rate and radar frequency, among other things. The
mapping transfers the triangular mesh to a new orthogonal coordinate system, where first
two coordinates are respectively line-of-sight velocity and relative range.
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5. Support for parallel computing

Due to shift from sparse (boundary contour) to dense (Fourier plane) data, more com-
putational resources are required. Most of the computation time is spent on calculating
partial derivatives with respect to vertex coordinates. Fortunately this task is easily paral-
lelizable. Matlab’s parallel computing toolbox facilitates effortless transfer from serial to
parallel computing. Both lightcurve and thermal modelling routines use Matlab parallel
toolbox. However, parallel computing toolbox does not support shared memory, making
it slow at large datasets. An alternative for parallel computing toolbox is OpenMP API,
which is used in adaptive optics and range-Doppler radar routines.

6. Getting started

Here we will briefly outline the structure of the inversion routines. The main point to
remember is that the data fitting is done on the Fourier plane, with an exception of the
lightcurves. For more detailed information, one should peruse comments in the examples.

(1) Preparation of data. Each data image is transformed to the Fourier plane by tak-
ing the two-dimensional Fourier transform (usually FFT is used). However, one
should keep in mind that the FFT only approximates the Fourier transform, espe-
cially in the case where the pixel size non-negligible. Then the frequencies used
for data fitting are selected. The trivial choice is take all the available points (with
zero frequency and negative frequencies discarded), but often smaller number of
frequency points is sufficient. This is especially true with the range-Doppler data,
where the instrument resolution is not necessarily the same as the usable resolu-
tion. Also the ephemeris information at the observation time is recorded.

(2) Initialization of shape. The spin vector and size of the shape will be set to some
initial values. Note that the especially rotation period should be chosen carefully,
since the optimization routine is not meant for the period determination. This
is usually not a problem, since the rotation period can be determined from the
lightcurves beforehand.

(3) Initialization of weight coefficients. This is singularly the most important step.
The regularization weights should be chosen to keep the shape consistent during
the optimization. On the other hand, too large weights could result non-optimal
solution. The weighting between different data modes is also important. Theoret-
ical guideline called maximum compatibility estimate (Kaasalainen 2011) can be
used to determine the optimal weighting.

(4) Shape optimization For each observation, the model fit to data is calculated and
Jacobian matrix is formed. All the examples here use the Levenberg-Marquardt
optimization, which is computationally demanding when large datasets are used.

6.1. Available routines. The main purpose of this software package is the calculation of
Fourier-transformed generalized projection of the shape model at selected frequencies and
the formation of Jacobian matrix, which can be used in optimization routines. Most of the
routines are implemented in C (with an exception of thermal modelling), and Matlab is
used only for combining results and for the optimization routine. Each routine calculates
partial derivatives with respect to the vertex coordinates and rotation angles, making the
Jacobian matrix independent of parametrization.

• Generate LC Matrix calculates model fit to the lightcurves. The actual compu-
tation is done in C, since the raytracing required for nonconvex shapes in com-
putationally demanding. Lightcurve data can be read from a file (in DAMIT
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Figure 1. ADAM optimization algorithm as a schematic for one image type.

format) using routine read lightcurve struct. Only relative lightcurves are
used, absolute lightcurves may be converted to the relative lightcurves. It is im-
portant to remember that the absolute size of the asteroid cannot be determined
if only relative lightcurves is used. See examples Metis lc Example oct and
Metis lc Example subdiv.

• Generate AOFT Matrix mex calculates model fit the adaptive optics images (can
also be used for other kinds of images and HST/FGS data). It is also possible to in-
clude a PSF. See comments in the example files AO Invert Octantoid Example
and AO Invert Subdiv Example. More complicated example is included in Extras
folder. That example is used to invert the asteroid Metis from lightcurves and AO
data using a nontrivial PSF (rough estimate, since true PSF is not known). Unfor-
tunately the processed AO data cannot be included, as it is not publicly available.
Of course, data from the Keck archive may be used.

• Calc Temp calculates temperature distribution of triangular mesh using the FFT
approximation. Also partial derivatives with respect to vertices and rotation angles
are returned. This routine is written in Matlab, but will be converted to C.

• Generate HF Matrix determines heat flux (normalized wrt total flux) from an
object and calculates partial derivatives. Thermal interf Example shows how
this routine can be used to invert shape from thermal infrared interferometry data
(simulated). Data for the example was generated by first solving heat equation us-
ing the finite difference method, and then the CASA software was used for adding
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atmospheric noise and for nonuniform sampling corresponding to the antenna ar-
ray.

• Generate RD Matrix calculates model fit to range-Doppler data, and partial deriva-
tives with respect to vertex coordinates, rotation angles, offsets and scaling terms.

• Octantoid to Trimesh converts a shape represented by octantoid parametriza-
tion to a standard triangular mesh. Also partial derivatives of vertex coordinates
wrt. octantoid parameters are returned.

• Sqrt3 Subdiv subdivides given triangular mesh. Subdivision level can be cho-
sen. Increasing subdivision level adds stability to inversion, but the number of
facets increases exponentially wrt subdivision level. Partial derivatives wrt. vertex
coordinates are returned.

6.2. Data structures. Data is passed to subroutines by using a struct with cell array fields.
Following fields are required (let’s call the struct variable FT):

• FT.E: Unit vector, camera direction in the global frame as seen from the asteroid.
• FT.E0: Unit vector, Sun direction as seen from the asteroid (not used for range-

Doppler).
• FT.TIME: Observation time.
• FT.freq: n × 2 matrix, containing the sample frequency points on the Fourier

plane. Note that this vector should not contain (0, 0).
• FT.data: n × 1 complex vector, Fourier transform of data corresponding to fre-

quencies listed in FT.freq.
• FT.distance: Distance (in AU) between the asteroid and the camera (not needed

for range-Doppler)
• FT.pdf: Fourier transform of the point-spread function at the points determined

by FT.freq (currently only for AO and HST/FGS)
• FT.up: Unit vector, determines camera orientation (not needed for range-Doppler)
• FT.radarfreq: Radar frequency (only for range-Doppler);

Lightcurves use a different structure. See read lcurve struct.

6.3. Offset and scale. For each data image, it is assumed that the position with respect
to model is unknown. Offset in the spatial plane corresponds to phase change on the
Fourier plane. Derivatives wrt. offset term are calculated and optimal offset are determined.
It is usually a good idea to approximately center images beforehand, to facilitate better
converge. This is especially true for range-Doppler images.

There are two approaches to image scaling. If images are good with low noise levels, we
divide images with total brightness. In cases where noise or artifacts dominate (e.g. range-
Doppler or thermal images) it is better to leave images unnormalized and fit a scaling term
for each image.
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Viikinkoski, M., Kaasalainen, M., & Ďurech, J. 2015, Astronomy & Astrophysics

E-mail address: matti.viikinkoski@gmail.com



6 MATTI VIIKINKOSKI

Figure 2. Example reconstructions from lightcurve and adaptive optics data.
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